The Deadliest Sin

From survival of the fittest to staying fit just to survive: scientists probe the benefits of exercise—and the dangers of sloth.

by Jonathan Shaw

In the bottle before you is a pill, a marvel of modern medicine that will regulate gene transcription throughout your body, helping prevent heart disease, stroke, diabetes, obesity, and 12 kinds of cancer—plus gallstones and diverticulitis. Expect the pill to improve your strength and balance as well as your blood lipid profile. Your bones will become stronger. You’ll grow new capillaries in your heart, your skeletal muscles, and your brain, improving blood flow and the delivery of oxygen and nutrients. Your attention span will increase. If you have arthritis, your symptoms will improve. The pill will help you regulate your appetite and you’ll probably find you prefer healthier foods. You’ll feel better, younger even, and you will test younger according to a variety of physiologic measures. Your blood volume will increase, and you’ll burn fats better. Even your immune system will be stimulated. There is just one catch. There’s no such pill. The prescription is exercise.

“We’ve spent years studying numerous nutritional and lifestyle factors,” says Frank Hu, associate professor of nutrition and epidemiology at the Harvard School of Public Health (SPH). “Good nutrition is essential for health,” but once-promising discoveries, including antioxidant supplements like beta-carotene, have turned out not to be magic pills. “The single thing that comes close to a magic bullet, in terms of its strong and universal benefits, is exercise.”

During the last 10 years, epidemiologists like Hu have clearly demonstrated exercise’s protective effects against many serious diseases. And yet, as one medical researcher studying exercise in elderly populations put it, “Exercise is often overlooked.” Though a large body of epidemiological research shows its protective effects against numerous maladies, there has been less research into how these effects actually take place. Exercise can change virtually every tissue in the body, but because it works by many different pathways—metabolic, hormonal, neurological, and mechanical—understanding why and how it works, in an integrated way, is not easy. We know exercise is good for us. But why?

The Sedentary American

Seventy-five percent of the population of the United States fails to meet even the minimum government recommendation for daily exercise: 30 minutes of walking or its equivalent, accumulated in bouts as short as 8 to 10 minutes. The recommendations have in some ways become easier over the last three decades (see “Exercise: A Changing Prescription,” page 43), but we have given up physical activity of any kind even faster. “America loves to think of itself as a youthful nation focused on fitness, but behind the vivid media images of robust runners, Olympic Dream Teams, and rugged mountain bikers is the troubling reality of a generation of young people that is, in large measure, inactive, unfit, and increasingly overweight.”

So begins Promoting Better Health, a Centers for Disease Control (CDC) report. “Walking and bicycling by children aged 5 to 15 dropped 40 percent between 1977 and 1995,” it continues. Even in schools, budget constraints have led to suspension of physical education classes. Steven Gortmaker, professor of society, human development, and health at SPH, and colleagues recently used a tracking de-
vice to measure the minute-by-minute physical activity of school-age children throughout the day. The highest levels of activity, he told a group of public-health professionals at an October 2003 seminar on the “Worldwide Childhood Obesity Epidemic,” occur during the hours when children travel to and from school. Since 1980, the percentage of American children who are overweight has doubled.

In 2003, the CDC declared obesity the most important public-health issue in the United States. Obesity increases the risk for type 2 diabetes, cardiovascular disease, and some cancers. Two-thirds of Americans are now overweight or obese. In Michigan, half the men are overweight—34 pounds on average—and the problem has been steadily growing for more than 25 years. Children and teenagers are contracting “adult-onset” diabetes at a rapidly increasing pace. As Dr. Kenneth Cooper, M.P.H. ’62, one of the country’s foremost experts on physical activity (he coined the word aerobics) puts it, “In Texas, we may have the first generation in which the parents will outlive their kids,” as obese children who develop diabetes before 14 years of age can expect their lifespan to be reduced by 17 to 29 years.

This epidemic is not confined to any particular region of the United States. It is ubiquitous, Gortmaker says, in rural and
urban communities, among both the wealthy and the poor.

The cause? Epidemiologists call it an energy imbalance: too much food and too little activity.

The imbalance is small, equivalent to the caloric content of one sugar-sweetened drink per day, Gortmaker says, suggesting that giving that up, or forgoing a few bites at dinner, could prevent further weight gain. Soda, fast food, and the super-sizing of portions are frequently cited as culprits on the intake side of the equation, because a typical fast-food meal (double cheeseburger, soda, fries, and a dessert) can contain, at 2,200 kilocalories, enough energy to power a 120-pound person through an entire marathon. Even so, by some estimates, this country’s per capita caloric intake in the last 20 years has not increased enough to account for the increased body mass in the same period. For that, we have to look to other changes in lifestyle.

“Obviously, there is no longer any need for physical activity for transportation, food-seeking, or daily survival,” says JoAnn Manson, M.D., chief of preventive medicine at Brigham and Women’s Hospital in Boston and a professor at SPH and Harvard Medical School (HMS). “We have labor-saving devices everywhere. You can get through the day expending virtually no energy, doing virtually no physical activity. Many people choose that lifestyle.”

The modern lifestyle is a radical departure from the one in which we evolved. Though scholars disagree on the relative amount of time that our hunter-gatherer ancestors spent running versus walking, the evidence suggests that they covered a lot of ground either way: 10 to 20 kilometers a day walking among men, says professor of biological anthropology Richard Wrangham, “and about half that for women. Chimpanzees, by comparison, walk only 2 to 4 kilometers a day, and all other apes walk even less. The ordinary thought,” he says, “is that women would have done this every day, because they would have been the providers of the staple foods.” Activity levels were probably more variable with men: “[They] would have been bringing in the more chancy foods as well as relaxing after a particularly heavy day the day before.”

Wrangham’s colleague, professor of anthropology Daniel Lieberman, thinks running has long played an important role in human societies. He points not only to anthropological evidence (the running traditions of Native Americans, for example), but also to a host of musculoskeletal adaptations that he says can only be explained as adaptations for running, such as the Achilles tendon, which “has no function in walking, is absent in chimpanzees, and first appears in the genus Homo.” Either way, the human record tells a story of frequent, long distance, aerobic exercise.

Epidemiologists debate the merits of walking versus running, but agree that studies link increasing activity levels to better health along a continuum ranging from extreme sedentary behaviors to the “vigorous exercise” of subjects who run more than 20 miles a week. Hu believes that in discussions of the benefits of exercise, the extreme low end of the spectrum—sedentary behavior—is too often neglected. Being sedentary is an independent risk factor for coronary heart disease (CHD), notes Manson, even among people who do exercise. “We found in the Women’s Health Initiative [a study of more than 160,000 postmenopausal women aged 50 to 79] that the longer you sit each day, the greater your risk of cardiovascular disease, even after you adjust for time spent in recreational activity.” She tells her patients to get up and walk around as much as possible, and to reduce screen time (TV, video games, working at the computer). “The key is to minimize sitting,” she says. Hu agrees. Given that the average American spends 4 to 5 hours a day watching television, he says, “For most people, it is not sufficient to address only the exercise side of the coin. Equally important is the sedentary side of the coin.”

“The Case for Physical Activity

An estimated 38 million Americans now have diabetes, a leading cause of heart disease, stroke, blindness, kidney disease, and nerve damage. If current trends continue, the CDC estimates, more than one in three children born in the year 2000 will develop diabetes during their lifetime. This is shocking, but not surprising given the American lifestyle. When researchers want to model the disease, they feed mice a high-fat or high-sugar diet and don’t let them exercise. “Within a few weeks or months,” says Hu, “they will become obese and they will be-
come diabetic.” Modern society has put us in almost the same environment, he says, “with an unlimited amount of calories and foods and also very little physical activity.”

Diabetes is a metabolic disorder that leads to excess sugar in the blood. More than 90 percent of diabetes is the type 2, or “adult-onset,” form of the disease that can be prevented or delayed by exercise. In type 2 diabetes, cells that normally take up sugar in response to the body’s secretion of insulin become “insulin resistant,” causing blood-sugar levels to spike. (People with type 1 diabetes are sensitive to insulin, but require injections of the hormone because they have lost the ability to make enough for themselves.) In the Nurse’s Health Study (a large study of female registered nurses begun in 1976 and based at Channing Laboratory, Brigham and Women’s Hospital), Hu found that even walking—a moderate-intensity activity—for 30 to 45 minutes per day lowered the risk of developing type 2 diabetes by 30 to 40 percent. “This reduction is remarkable,” he says. “There is nothing else that has stronger and quicker effects than physical activity for preventing diabetes.”

“We know that if you get diabetes, there is no cure,” Hu continues. “You will live with the disease for the rest of your life.” Exercise can help manage diabetes in several ways. Because 75 percent of people with diabetes will die of cardiovascular disease, it is extremely important to prevent or delay the onset of the disease among this population. Walking a half hour to an hour a day lowers a diabetic’s risk of dying from heart disease by 40 to 50 percent. A number of drugs are good at controlling blood pressure, he says, “but none of them is as effective as exercise in delaying or preventing cardiovascular complications and preventing deaths among people with diabetes.”

Among healthy people, exercise can raise levels of HDL, or “good” cholesterol, improve clotting factors, lower blood pressure, and decrease inflammation. All of these factors, says Hu, reduce the risk of cardiovascular disease: “We have found that both vigorous exercise and walking can substantially reduce the risk of heart attacks and—this was somewhat of a surprise—both kinds of stroke.” (Ischemic stroke, caused by insufficient blood flows in the arteries of the brain, is very similar to heart disease. Hemorrhagic stroke occurs when vessels in the brain rupture and bleed.) “Even though their pathophysiology is very different,” says Hu, “exercise can decrease the risk of both.” Long-term exercise causes the endothelial cells lining the blood vessels to synthesize nitric oxide, a relaxing factor that increases blood flow. People with insufficient nitric oxide in their system are more likely to have stiff blood vessels, hypertension, and other inflammatory factors, he explains. “That’s the common pathway leading to both kinds of strokes, and that is why exercise is beneficial in each case.”

For similar reasons, exercise has been shown to help fight erectile dysfunction, says Eric Rimm, SPH associate professor of epidemiology and nutrition and assistant professor of medicine at HMS. In a study of older men, Rimm found that exercise enhances the relaxation response necessary for an erection and improves vascular reactivity to stimulation. Nitric oxide again plays a key role, but all the other improvements in circulation associated with exercise can also contribute to improved function. In a German study comparing the effects of exercise to Viagra (sildenafil) and a placebo treatment, men with erectile dysfunction and mild to moderate circulation problems engaged in a two-year program of squatting exercises and pelvic and leg lifts designed to improve blood flow to the pelvis, buttocks, and upper leg muscles. Eighty percent of the exercisers reported better erections, compared with 74 percent taking sildenafil and 18 percent on the placebo.

How much exercise is enough? Some controversy remains about the optimal amount and intensity of exercise required to reap protective benefits against cardiovascular disease. “Some people say you need to do vigorous exercise in order to achieve the benefits,” explains Hu. “Others have said that, no matter what kind of exercise you do, if you have the same amount of energy expenditure, you will get the same benefit.” Hu thinks that both are probably right. “For the majority of Americans, it is probably not very useful to distinguish moderate- from vigorous-intensity exercise; the highest priority is simply to increase their energy expenditure. No matter what they do,” he says, “it is better than sitting on the couch.” But people who already exercise can probably reap additional
The prevalence of obesity (a body mass index of 30 or more, equivalent to 30 pounds overweight for a 5-foot, 4-inch, woman or 40 pounds for a 5-foot, 10-inch, man) has grown rapidly for a quarter century. In 1997, the Centers for Disease Control added a new category for states in which 20 percent or more of the population is obese; the 25 percent category followed in 2001. Exercise has grown rapidly for a quarter century. In 1997, the Centers for Disease Control added a new category for states in which 20 percent or more of the population is obese; the 25 percent category followed in 2001. The prevalence of obesity (a body mass index of 30 or more, equivalent to 30 pounds overweight for a 5-foot, 4-inch, woman or 40 pounds for a 5-foot, 10-inch, man) has grown rapidly for a quarter century. In 1997, the Centers for Disease Control added a new category for states in which 20 percent or more of the population is obese; the 25 percent category followed in 2001. The prevalence of obesity (a body mass index of 30 or more, equivalent to 30 pounds overweight for a 5-foot, 4-inch, woman or 40 pounds for a 5-foot, 10-inch, man) has grown rapidly for a quarter century. In 1997, the Centers for Disease Control added a new category for states in which 20 percent or more of the population is obese; the 25 percent category followed in 2001. The prevalence of obesity (a body mass index of 30 or more, equivalent to 30 pounds overweight for a 5-foot, 4-inch, woman or 40 pounds for a 5-foot, 10-inch, man) has grown rapidly for a quarter century. In 1997, the Centers for Disease Control added a new category for states in which 20 percent or more of the population is obese; the 25 percent category followed in 2001. The prevalence of obesity (a body mass index of 30 or more, equivalent to 30 pounds overweight for a 5-foot, 4-inch, woman or 40 pounds for a 5-foot, 10-inch, man) has grown rapidly for a quarter century. In 1997, the Centers for Disease Control added a new category for states in which 20 percent or more of the population is obese; the 25 percent category followed in 2001.

Americans’ Bulging Profile
Adult Obesity, 1991-2002

The prevalence of obesity (a body mass index of 30 or more, equivalent to 30 pounds overweight for a 5-foot, 4-inch, woman or 40 pounds for a 5-foot, 10-inch, man) has grown rapidly for a quarter century. In 1997, the Centers for Disease Control added a new category for states in which 20 percent or more of the population is obese; the 25 percent category followed in 2001.

Smart Muscle and Cellular Fuel Sensors

When you eat carbohydrates, either simple sugars or starch, both are converted to glucose and your blood-glucose levels rise quickly. Because long-term high blood-sugar levels are not good for your body, brain, or heart, the pancreas immediately responds by secreting the hormone insulin to counter the surge. Insulin decreases blood sugar by signaling skeletal muscles (as opposed to muscles like the heart) to increase their uptake of glucose from the blood, and helps to inhibit the production of new glucose by the liver. In this way, insulin plays an important role in maintaining the proper blood-sugar level.

If you are physically active and lean, your tissues are very sensitive to the effects of insulin, so you need only a small amount to be effective at controlling blood glucose. But if you are obese or sedentary, the muscles and liver are less sensitive to insulin, so that glucose uptake by muscle is reduced and the liver may continue to produce glucose even when your body doesn’t need it. Such people are termed “insulin resistant” and tend to have higher blood sugar. Insulin resistance, a component of metabolic syndrome or syndrome X, is present in nearly a quarter of all Americans older than 20, and in 40 percent of those over the age of 60. Many people live with the condition for years without knowing it, until they develop diabetes.

Even for a person with type 2 diabetes, however, a single bout of exercise sends glucose “right into the muscle, and you have increases in glucose uptake that are normal or near normal,” says the Joslin Diabetes Center’s Dr. Laurie Goodyear, who studies molecular effects of exercise. This suggested to Goodyear and others in the field that even though exercise and insulin can both increase glucose uptake by the muscle, they must work by different mechanisms.

Insulin circulating in the blood normally works by attaching to insulin receptors on the surface of a muscle cell. This activates a complex series of signaling proteins that instruct glucose transporters within the cell to come to the cell membrane, where they pick up blood glucose and carry it into the cell, where it is either stored as glycogen or undergoes numerous reactions that result in the generation of energy.

If you exercise every day, you benefit by increasing the intensity of their activity. “We have found that among men, the intensity itself can give you additional cardiovascular protection above and beyond the total amount of exercise you do,” Hu says. Vigorous aerobic exercise may be best at burning visceral fat, the metabolically active intra-abdominal adipose tissue that the liver draws on for energy when other fuel sources run low. Fat is not just an energy reserve, researchers have learned in recent years. It can produce and regulate hormones that cause inflammation of the cardiovascular system. Any exercise that gets rid of visceral fat will improve health.

And the optimal amount of exercise? Early studies suggested that when you reached a certain amount of activity, your benefit would plateau. “Our data so far don’t support this assumption or hypothesis,” says Hu. “Basically, the more the better. There is a straight dose-response relationship in both men and women. For preventing heart disease and stroke,” he says, “there is no limit to the benefits of exercise.”

But changes in blood pressure and vascular relaxation are not the only effects of exercise on the cardiovascular system, Hu says. Exercise increases the stability of the heart beat, reduces important markers for inflammation in the blood like C-reactive protein, and causes changes in blood lipids (like the size of cholesterol particles) that are still being characterized and understood. It also reduces the coagulability of the blood, by changing the secretion of thrombogenic factors (hormones that control clotting), so that blood can flow more easily to working muscles. This prevents the formation of clots in the blood, further reducing the risk of heart attack and stroke.
From Elite to Everyman

Genetic endowments aside, an elite endurance athlete and the average daily walker are, in their adaptations to exercise, different less in kind than in degree. “Adaptations to training take place along a continuum,” says Jennifer Sacheck, a postdoctoral fellow at Harvard Medical School studying the biochemistry of activity and inactivity. The person who works out every day for an hour will show better adaptation to training stress than someone who exercises three times a week for 20 minutes.

But the elite are not only training more, they are careful and systematic about what they do. Many use heart-rate monitors to gauge the intensity of their workouts, so they can exercise at a percentage of their maximum heart rate (roughly, 220 minus one’s age). Most of their workouts, perhaps 80 percent of them during the course of a year, take place in what is called “zone 1,” when the heart beats at roughly 70 to 75 percent of its maximum. This is an easy pace once initial training adaptations have occurred; the challenge of a zone-1 workout is said to lie in its length, which may range from one hour most days up to two to three hours once a week. An endurance athlete’s season will begin with months of this long, slow, distance training, thought specifically to increase capillarization of muscles and to enhance the mechanisms of aerobic energy metabolism. As the competitive season approaches, the athlete begins to introduce high-intensity intervals into the training, typically working up to two of these a week. For example, a series of four, four-minute intervals performed at 90 to 95 percent of the maximum heart rate (a challenging pace) might be performed with the goal of increasing the stroke volume of the heart. Always, the athlete is trying to stress the body, but to avoid injury, because the hard-won adaptations to training are all reversible, some in as little as a few weeks.

Resistance training is usually part of the athlete’s routine also, in order to build strength and avoid the loss of lean muscle mass over time. Most important of all, the elite athlete stays committed to training year round, with perhaps a few weeks or a month off each year to pursue other kinds of physical activity. For the rest of us, lack of motivation can be a major obstacle to exercise—and even people who want to exercise regularly can have difficulty incorporating activity into their busy daily lives. Doing something enjoyable, and making it part of a daily routine—perhaps by walking or biking part of the way to and from work—are proven strategies. Here are some additional things that Sacheck and JoAnn Manson, chief of preventive medicine at Brigham and Women’s Hospital in Boston, and a professor at Harvard’s public health and medical schools, have found can motivate the slothful, and keep them on track.

- Knowledge. Learn more about what exercise can do for you.
- Aspiration. Have a goal to work toward. Make it realistic.
- Monitor progress. Use a pedometer, or perhaps keep a log of what you do. These tools will let you track your progress.
- Authority. Ask your doctor to prescribe a course of exercise.
- Patience. Changes in the body occur slowly. People who are trying to lose weight in particular need to give it time.
- Social support. Having a spouse, friends, or exercise partner share your efforts will improve consistency.
- Reveille. People who exercise in the morning can often avoid the inevitable distractions that come up in the course of a day.
- Variety. Try out new activities. Weight-train, row, swim, or rollerskate. Cross-training is good for physical and mental well-being.
- Strategy. Increase your activity by taking the stairs instead of an elevator or elevator, or getting off one stop early when riding public transportation. Go for walking meetings with colleagues.
- Options. Have indoor and outdoor options so that you can’t make excuses whenever the weather is bad. Try a new class, join a gym, or purchase home exercise equipment.
- Self-abnegation. If not for yourself, then do it for your family!

For more, read The 30-Minute Fitness Solution: A Four-Step Plan for Women of All Ages, by JoAnn Manson and Patricia Amend (Harvard University Press).

the number of glucose transporters in your muscles increases, making the muscles themselves even more susceptible to the actions of insulin. “This allows less insulin secretion,” says Goodyear, “and a better overall regulation of glucose levels in the body.” That effect, depending on the type of exercise and the way you eat “could last for 24 to 48 hours after the exercise bout,” says Goodyear. “I think this is the fundamental way that exercise can reduce the risk of developing diabetes and can delay the development of diabetes.”

A major factor that controls the sensitivity of muscles to the insulin signal is the level of glycogen (stored fuel), she says: “The more you deplete glycogen levels, the more sensitive the muscles will become.” Thus, longer and more vigorous activity—jogging for 60 minutes, for example—will have longer-lasting effects on glucose uptake than a short walk.

But the reason exercise works so well in treating people who already have type 2 diabetes has nothing to do with insulin: they already have insulin in the bloodstream, but the muscles don’t respond. The current challenge in Goodyear’s field, therefore, is to figure out how this separate exercise effect works.

When a muscle contracts, glucose transporters move to the cell membrane—just as they do in the presence of insulin. This suggested to researchers that perhaps exercise activates the same protein-signaling pathways as insulin. Not so, says Goodyear. She and other scientists have since discovered that a molecule called AMP kinase may be a key to the regulation of glucose transport by exercise. The molecule, which is already known to regulate fatty acid oxidation, is now the subject of an “explosion of research,” Goodyear says. “It turns out that AMP kinase is probably doing lots of things in the cell besides regulating glucose transport.” It may even regulate PGC-1, a gene transcription protein that HMS professor of cell biology Bruce Spiegelman has shown can increase the number of mitochondria (energy-producing structures) in muscle cells, increase fatty acid oxidation, and even induce switches in muscle fiber type—all adaptations to endurance exercise, says Goodyear. For the purposes of glucose transport, AMP kinase acts as a kind of cellular fuel sensor. Pharmaceutical companies are interested in the molecule as a possible drug target—perhaps a first for the field of exercise research.

Despite the possibility of AMP kinase-based medicines for people with diabetes, Goodyear’s research has led her to conclude that it is not the only molecule involved in exercise-induced glu-
Exercise levels among Americans are so low that in large epidemiological studies of what people actually do, “Even the top exercisers are doing very little....”

Exercise does not seem to reduce one’s risk of developing prostate cancer—but vigorous exercisers may reduce their risk of dying from the cancer once they get it, either by reducing the growth of the tumor or enhancing their ability to withstand it. In the Health Professionals Follow-up Study (which followed 51,529 men in the health professions), Giovannucci found a 50 percent reduction in the risk of dying from prostate cancer among men at the top end of vigorous exercisers.

In Outer Space and on Earth
“A lot of the epidemiological effects [of exercise] that have been uncovered were unexpected,” says HMS professor of cell biology Alfred Goldberg, who studies the atro-
Exercise: A Changing Prescription

The first formal epidemiologic study linking activity to better health took place in the late 1940s, when a researcher in London, Jeremy Morris, and his colleagues compared double-decker bus drivers to conductors. The conductors ran up and down stairs all day collecting tickets while the drivers sat at the wheel. "Morris found that the conductors had lower rates of heart disease," says I-Min Lee, an associate professor at both the Medical School and the School of Public Health. Critics dismissed the study on a variety of grounds, insisting that the other factors it documented—lower blood pressure among the conductors, and lower body weight (indicated by the smaller waists of their trousers)—could explain the differences in rates of heart disease.

But as evidence for the health benefits of activity mounted, the question became: What sort of exercise is needed? The first official recommendations were formulated in the 1970s: adults were advised to engage in at least 20 minutes of continuous vigorous exercise, three times a week. The goal of these initial recommendations—which became the basis for the phrase, "No pain, no gain"—was to improve physical fitness. Then, in 1990, a group of researchers investigating physical activity began to question the necessity of working out intensely for health, as opposed to fitness, benefits. They worried that the recommendations had become a barrier to the average citizen, contributing to low rates of physical activity among Americans. An expert panel convened by the Centers for Disease Control and the American College of Sports Medicine re-examined the literature, and in 1995 issued new guidelines, advising every American adult to accumulate at least 30 minutes of moderate-intensity physical activity a day. The idea that you could walk instead of jog and accumulate activity by adding together exercise bouts of at least 8 to 10 minutes each marked a "radical departure," says Lee. "At that time, there was little direct evidence examining the value of moderate-versus vigorous-intensity activity on disease outcomes like heart disease. There were even fewer data regarding the accumulation of physical activity." Researchers (including Lee) began to conduct studies testing the new approach. Their findings have shown clearly that moderate-intensity activity is beneficial against chronic diseases such as heart disease, stroke, and diabetes.

But what does moderate mean? "We can look at intensity in two ways," Lee says, "on either an absolute or a relative scale." Using absolute measures, a 75-year-old man and a 25-year-old man walking briskly at four miles per hour are said to be engaged in identical, moderate-intensity activity. But in a relative sense, the 75-year-old might rate his effort as fairly hard, while the 25-year-old might say the pace was easy. Current physical activity recommendations generally give examples of physical activity that are "moderate" in intensity for most young to middle-aged persons. But, for older people, who tend to be less fit, perhaps even lighter-intensity physical activity can qualify as "moderate."

In fact, the Harvard Alumni Health Study (a study of Harvard College alumni who matriculated between 1916 and 1950 founded by Professor Ralph Paffenbarger, one of the pioneers of epidemiologic studies on physical activity and health) found that when the alumni were in their forties, vigorous exercise predicted greater longevity and lower risk of cardiovascular disease. "As they aged," Lee says, "relative intensity became a better predictor of heart-disease risk."

Is the intermittent approach to activity valid? Lee and her colleagues found in the Harvard study that as long as the energy expended was the same, it did not matter whether the exercise was carried out all at once in a single bout or broken up into several shorter bouts: the greater the energy expenditure, the lower the risk of heart disease.

Goldberg and his colleagues hope to find a biochemical way to turn off this genetically controlled program of atrophy. Exercise turns it off by causing release of a (please turn to page 98)

Harvard Magazine 43
THE DEADLIEST SIN
(continued from page 43)
growth factor called IGF-1 (insulin-like growth factor-1) which stimulates the production of new proteins while reducing the breakdown of old ones (except during fasting). But exercise is not easy in a space capsule under zero-gravity conditions.

The Physical Response to Training
“Muscles adapt to the kind of work that they do,” says Goldberg. We all possess a mix of muscle fibers, some better for short bursts of activity, some superior for endurance. “The dark meat of a chicken or a turkey or a fish is muscle that is continually active.” These muscles have a large blood flow and lots of mitochondria in their cells, and they burn fats and glucose all the time. The meat is dark because it is full of iron, which carries oxygen and is used by the mitochondria to burn fuels. These are the type of muscle fibers found in greater abundance in the legs of marathoners. In contrast, “The big muscles you see in a weight lifter,” says Goldberg, “are the pale white muscles used for maximum strength in a short time.”

But exercise is more than just a problem of the muscles working, Goldberg points out. A marathoner will have more dark muscle fibers that are fatigue resistant, but will also exhibit many other kinds of specialized adaptations. The body has to mobilize enough energy to keep the muscles working by delivering oxygen, fats, and glucose. That means the circulatory system has to work well. The heart has to adapt to pump more blood and the red cells need to be able to carry oxygen better. The circulation has to be able to carry away waste, like carbon dioxide and lactic acid; circulating hormones need to mobilize the energy, whether from blood glucose or fats, to keep the muscles working. The circulatory system must also redistribute the heat generated in working muscles by delivering it to the heart, where it is pumped to the surface and radiated (when you turn red) or spread by the evaporation of sweat. “A person who is trained,” says Goldberg, “has to have all these systems working pretty well.”

People who engage regularly in vigorous aerobic exercise undergo some remarkable adaptations. Not only will they develop more mitochondria, glucose transporters, and oxidative enzymes in their muscles, they will grow new capillaries in the skeletal muscles, the heart, and the brain. The left ventricle of the heart will grow larger, and pump even more effectively as total blood plasma volume increases. The number of circulating red blood cells will also rise, improving the ability to carry oxygen. Blood pressure will go down, as will the heart rate at rest.

Peak bone density in the young will improve, and in adults, the rate of bone mass loss will slow with exercise, says anthropologist Daniel Lieberman, who recently completed an experiment providing the first definitive proof of this effect. Even the joints change, he says, as “mechanical loading leads to enormous and prevalent effects throughout the skeleton.”

Muscles will quickly become much stronger, even without getting bigger. This is thought to be the result of improved muscle fiber “recruitment patterns,” as the neuromuscular system learns to contract just the right combination of fibers within a muscle in order to complete a particular task efficiently. Strength gains may also come from improved synchronization, the coordinated firing of individual motor neurons that control muscle fiber. Muscles and liver will learn to store more fuel in the form of glycogen, further improving endurance. Circulating levels of cortisol, an anti-inflammatory hormone and mood enhancer, will go up, as will epinephrine and norepinephrine, hormones that regulate, among other things, the burning of adipose tissue.

Many of these positive adaptations involve common physiological markers of aging, including blood pressure, cardiac output, cholesterol levels, endurance, and strength, says SPH and HMS associate professor I-Min Lee. “Almost everything that declines physiologically as you grow older improves with exercise.”

Fuel for an Active Lifestyle

Everyone should eat a balanced diet, but exercisers in particular should pay attention to the following advice, says nutritional biochemist Jennifer Sacheck.

• Drink plenty of water before, during, and after exercise. Your heart and body work much harder when you become dehydrated.

• Within 30 minutes after exercise, consume a carbohydrate-rich food along with a little bit of protein: a multigrain sandwich with lettuce, tomato, and a slice of lean turkey, for example. That is the best way to replenish intramuscular energy stores. It will also keep you from getting so hungry that you reach for the potato chips when you get home.

• Include nonfat dairy, whole grains, and lots of different-colored fruits and vegetables in your diet. Lean meat, fish, nuts, tofu, and the combination of beans and rice, bread and lentils, peas and corn, and cereal and milk are good protein sources. Many nuts, such as pistachios, almonds, cashews, hazelnuts, macadamias, pecans, peanuts, and natural peanut butter, are also a source of healthy fats.
Resistance training can also help people who are dieting—which can actually lower the metabolic rate, through mechanisms very like the atrophy that Goldberg and Sacheck study—by increasing or maintaining muscle mass. When muscle mass is lost, the body’s energy requirements go down, requiring even further reductions in caloric intake in order to lose weight. (Physicians like JoAnn Manson—who will actually write an exercise prescription for her patients—usually recommend starting with easy or moderate-intensity exercise and then practicing caloric restriction.) Resistance exercise also helps prevent osteoporosis, a condition that ultimately affects 50 percent of all American women, and is increasingly common among men as they, too, live longer lives.

“Older patients with rheumatoid arthritis can also benefit from exercise,” says Maura Iversen, S.D. ’96, a clinical researcher at Brigham and Women’s Hospital and instructor in medicine at HMS. “The concern,” she says, “has been whether weight-bearing activity on a joint with minimal cartilage would benefit the joint or wear it out.” With the advent of magnetic resonance imaging, it is now possible to measure changes in cartilage and the joint surface itself. This is an area of new and growing exploration. What researchers have found is that in healthy joints, “when you move, you actually improve the lubrication of the joint,” she says. “Movement leads to better cellular turnover in the synovial fluid, which provides nutrition to the cartilage and maintains cartilage health. We know that exercise can improve physical function and now have the capability to examine its impact on cartilage.”

Iversen recently completed a pilot study of chronic low-back pain in elderly patients and found that a 12-week program of endurance exercise on a stationary bicycle led to modest improvements in patients’ ability to perform the activities of daily living. The exercise program also led to enhancements in mood.

Exercise, it turns out, is particularly useful in treating the mild depression often experienced by elders due to declining function and increasing isolation. “Keeping your heart and body in shape is just a side benefit to exercise’s major effects on the brain,” asserts John Ratey, an HMS associate clinical professor of psychiatry. “The brain is where all the action is.” During exercise, “the increase in cerebral blood flow creates more capillaries, more conduits for blood to flow in the brain. So you are building a reservoir and protecting the brain, in a way, from strokes in the future.”

The increase in cerebral blood flow causes many interesting things to happen. Exercise increases production of a growth factor called BDNF, or brain-derived neurotrophic factor. “I call it Miracle Gro, brain fertilizer,” Ratey says, “because it keeps the neurons young and healthy and makes them more ready to connect with each other. It also encourages neurogenesis—the creation of new nerve cells.” This may have a cognitive benefit. Studies have shown that older adults with higher levels of cardiorespiratory fitness experience a slower rate of cognitive decline over time.

But exercise does more than just maintain the health of the brain. “In a way, exercise can be thought of as a psychiatrist’s dream treatment,” says Ratey. “It works on anxiety, on panic disorder, and on stress in general, which has a lot to do with depression. And it generates the release of neurotransmitters—norepinephrine, serotonin, and dopamine—that are very similar to our most important psychiatric medicines. Having a bout of exercise is like taking a little bit of Prozac [an antidepressant and anti-anxiety agent] and a little bit of Ritalin [which boosts the attention system], right where it is supposed to go.” He says there are now many studies which show that “exercise is as good or better than some of our antidepressants.”

Why? When we move, we have a sense of purpose, of competence, and of accomplishment. “People don’t get the fact that our frontal cortex evolved to make us better movers,” Ratey points out. “The higher functions—the executive function, thinking, abstraction, and philosophy—all evolved from the moving brain.”

“We’re animals,” he says. “We should be moving.”

Jonathan Shaw ’89, managing editor of this magazine, once ran a marathon, but is now a long-distance cross-country skier.

Lawyers as Peacemakers

“What drew me back to Harvard,” says Mnookin, “was, first, it’s my school, and, second, because of the work of Roger Fisher, Howard Raiffa, Jim Sebenius, Bruce Patton, Bill Ury, and others, the Program on Negotiation had an international presence and a potential impact on the profession that was irresistible.”

Today, as director of the Harvard Negotiation Research Project, one of nine such projects at PON, Mnookin is helping to train a new generation of scholars who want to do research in negotiation and dispute resolution. The Hewlett Foundation has once again chipped in, funding a fellows program that each year brings up to seven young scholars to PON.

Part of his project’s mission is to strengthen the theoretical underpinnings and empirical scholarship related to his field. He is at work on a book about the limits of negotiation. “I have spent the past 15 years of my academic career studying negotiation, and, like other negotiation imperialists, I find negotiations omnipresent and have a strong preference for resolving conflict through negotiations,” admits Mnookin. “But I do not believe that it always makes sense to negotiate. This book asks how one should think about whether to enter into negotiations or instead refuse to negotiate.”

He and others are devising new negotiation and ADR teaching units with the long-term goal of reorienting the traditional curriculum of American law schools. He wants graduates of any of them to have the intellectual and interpersonal skills they need to help clients solve problems more effectively, to know how to give their clients assistance that goes far beyond the advice that lawyers typically give in litigation and in managing corporate transactions. He wrote Beyond Winning “primarily for lawyers who feel sickened by the trench warfare and exhausted by cases that drag on unnecessarily for years, lawyers who want to change the way things work but don’t know how—lawyers who even wonder whether they picked the right profession.”

Early in the book, Mnookin sets out a guiding principle: “Because of their skills and experience, lawyers have what Abraham Lincoln described as a ‘superior opportunity to do good.’ They can be peacemakers.”

Christopher Reed is executive editor of this magazine.

PEACEMAKERS

(continued from page 60)